Individual microtubules in the axon consist of domains that differ in both composition and stability

نویسندگان

  • P W Baas
  • M M Black
چکیده

We have explored the composition and stability properties of individual microtubules (MTs) in the axons of cultured sympathetic neurons. Using morphometric means to quantify the MT mass remaining in axons after various times in 2 micrograms/ml nocodazole, we observed that approximately 48% of the MT mass in the axon is labile, depolymerizing with a t1/2 of approximately 5 min, whereas the remaining 52% of the MT mass is stable, depolymerizing with a t1/2 of approximately 240 min. Immunofluorescence analyses show that the labile MTs in the axon are rich in tyrosinated alpha-tubulin, whereas the stable MTs contain little or no tyrosinated alpha-tubulin and are instead rich in posttranslationally detyrosinated and acetylated alpha-tubulin. These results were confirmed quantitatively by immunoelectron microscopic analyses of the distribution of tyrosinated alpha-tubulin among axonal MTs. Individual MT profiles were typically either uniformly labeled for tyrosinated alpha-tubulin all along their length, or were completely unlabeled. Roughly 48% of the MT mass was tyrosinated, approximately 52% was detyrosinated, and approximately 85% of the tyrosinated MTs were depleted within 15 min of nocodazole treatment. Thus, the proportion of MT profiles that were either tyrosinated or detyrosinated corresponded precisely with the proportion of MTs that were either labile or stable respectively. We also observed MT profiles that were densely labeled for tyrosinated alpha-tubulin at one end but completely unlabeled at the other end. In all of these latter cases, the tyrosinated, and therefore labile domain, was situated at the plus end of the MT, whereas the detyrosinated, and therefore stable domain was situated at the minus end of the MT, and in each case there was an abrupt transition between the two domains. Based on the frequency with which these latter MT profiles were observed, we estimate that minimally 40% of the MTs in the axon are composite, consisting of a stable detyrosinated domain in direct continuity with a labile tyrosinated domain. The extreme drug sensitivity of the labile domains suggests that they are very dynamic, turning over rapidly within the axon. The direct continuity between the labile and stable domains indicates that labile MTs assemble directly from stable MTs. We propose that stable MTs act as MT nucleating structures that spatially regulate MT dynamics in the axon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability properties of neuronal microtubules.

Neurons are terminally differentiated cells that use their microtubule arrays not for cell division but rather as architectural elements required for the elaboration of elongated axons and dendrites. In addition to acting as compression-bearing struts that provide for the shape of the neuron, microtubules also act as directional railways for organelle transport. The stability properties of neur...

متن کامل

Influence of taxol and CNTs on the stability analysis of protein microtubules

Microtubules are used as targets for anticancer drugs due to their crucial role in the process of mitosis. Recent studies show that carbon nanotubes (CNTs) can be classified as microtubule-stabilizing agents as they interact with protein microtubules (MTs), leading to interference in the mitosis process. CNTs hold a substantial promising application in cancer therapy in conjunction with other c...

متن کامل

Regional differences in microtubule dynamics in the axon.

We have used an indirect method to compare the dynamic properties of microtubules (MTs) in the main shaft and distal regions of the axon. Individual MTs are staggered along the length of the axon and consist of a labile domain situated at the plus end of a stable domain (Baas and Black, 1990). As a result of this organization and the plus-end-distal orientation of axonal MTs, the most distal re...

متن کامل

Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules.

We have shown previously, using immunoelectron microscopy, that axonal microtubules (MTs) are composite, consisting of distinct domains that differ in their content of tyrosinated alpha-tubulin (tyr-tubulin). Here, we extend these studies using a novel preparation that permits visualization of individual axonal MTs over distances of several tens of micrometers using conventional immunofluoresce...

متن کامل

Microtubule dynamics in axons and dendrites.

We have investigated the stability, alpha-tubulin composition, and polarity orientation of microtubules (MTs) in the axons and dendrites of cultured sympathetic neurons. MT stability was evaluated in terms of sensitivity to nocodazole, a potent anti-MT drug. Nocodazole sensitivity was assayed by quantifying the loss of MT polymer as a function of time in 2 micrograms/ml of the drug. MTs in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 111  شماره 

صفحات  -

تاریخ انتشار 1990